<

ABSTRACT OR SUPPORTING INFORMATION

B

1
|
1

'

Presentation Information:

Talk to be given at Sun Microsystems, Palo Alto, CA, March 26, 1999. This talk is based on a similar one
that was presented at the Workshop on Performance Evaluation with Realistic Applications, San Jose, CA,

January 25, 1999, sponsored by the Standard Performance Evaluation Corporation (SPEC).

Title:
MPI, HPF or OpenMP -- A Study with the NAS Benchmarkst

Authors:
H. Jin*, M. Frumkin*, M. Hribar*, A. Waheed*, and J. Yan™
NAS Division, NASA Ames Research Center, Moffett Field, CA 94035-1000

Abstract:

Purting applications to new high performance parallel and distributed platforms is a challenging task.

Writing parallel code by hand is time consuming and costly. but this tusk can be simplified by high level
. would even better be automated by parallelizing tools and compilers. The definiticn of HPF

ges amli

langua

{Hign Performance Fortran, based 01 data parallel model) and OpenMP (based on shared memory paraliel
modelj stancards has ofiered great ooportunity in this respect. Both provide simple and clear intertaces to
langungs like FORTRAN and simpl:ty many tedious tasks encountered ir writing message passing programs.

In nur stady w2 implemented the ruruile

i versions of the NAS Benchmarks with HPF and OpenMP direcitves.

Comparison oi their performance with the MPI implementation and pros and cons of ditferent approaches wii,
he discussed alons with experience of using computer-aided tools to help purallelize these benchmarks. Based
Con the study . rotentials of applying some of the techniques to realistic aerospace applicatcns will re

prosenied.

3 Work was supported by NASA under contract number NAS2-14303 with MRJ Technology Soiutions.

= Eruployee of MRJ Technology So'utions.

Note:
Only the above abstract is being submitted for Document Availability Authorization at this time. The

of the fuli talk will be completed and submitted for DAA at a later date.

slides

NASA FORM 1676 (AUG 97)E

PAGE 3

MPI, HPF or OpenMP -- A Study
with the NAS Benchmarks

H. Jin, M. Frumkin, M. Hribar,
A. Waheed, and J. Yan

NAS System Division
NASA Ames Research Center

http://science.nas.nasa.gov/Groups/Tools
/Projects/LCM/

@ 399 Hi NPB-MPUHPF/OMP 1

AN

2
P
0

Motivation

NAS Parallel Benchmarks (NPB)
Programming Baseline for NPB (PBN)
HPF Implementation

OpenMP Implementation
Performance Comparison

Remarks

AN

2
3
It

@ 39 W NPR-MPVHPE/OMP 2

PR e e,

-

Cinn:

~Mptivai

High performance computing
» evolving and expensive
» code porting costly, time-consuming
Popularity of MPI
» high performance and widely supported (portability}
» but, bard to program, prone to error

Alternztives
» compriter aided tools and translators
» data parallel languages
» parallelizing compilers
Goal
» examine the effectiveness of HPF and OpenMP vs. MPI
» using NPB as a test suite

! .
% 399 HI NPB-MA/HPF/OMP 3

N\

2
b
i

Data partition
» how data be distributed
» domain decomposition strategy

Computation distribution
» independent loops and code sections
» computation masking

Data communication
» when data needed but not available

... downside
» no incremental approach
» low-level, hard to write

2
i

//
Cr 7 3w ¥PB.MPUHPE/OMP 4 {

Data parallel language approach
» parallelization based on data distribution, owner-
computes-rule
» user-added directives to distribute data and parallelize
loops

Strength
» built on top of a high-level language, easy to program
» portability from the HPF standard

Weakness
» questionable performance due to immaturity of
compiler technology
» hidden performance model, hard to track
» lack of handling irregular computation

@ 399 HI NP8 -MPVHPF/OMP 5

N\

2
4
I

An industry standard for SMP
» computation based on shared-memory model
» compiler-directives to parallelize loops and
independent code sections
» fork-and-join model
Strength
» offered incremental approach to code parallelization
» high-level constructs, easy to program
» portable for SMP, good performance

Weakness
» hidden data distribution
» not for distributed memory system

m

oo

@ 399 HJ NPB-MA/HPF/OMP 6

———— >
8 problems, 5 class (S, W, A, B, C) sizes
» derived from CFD applications
» specified algorithmically, not by source code
3 pseudo-applications
» BT .ndependent Elock(3x5)-Tridiagonal systems
» SP :ndependent Scalar-Pentadiagonal systems
» LU Lower-Upper symmetric Gauss-Seidel

S kernels
» FT «pactral methad {FFT) to so've Laplane equation
» MG MultiGrid method to solve Foisson equation
» CG tenjugate Gradient method
» TP random-number generztor (Embarrassingly Parallel)
» IS integer Sort

Iy HI NPH-MP/HEF OMP

Source code implementation
» with MPI ccrmmunication constructs
» cocded in Fortran 77, except IS (C)
» cptimized generically, not for specific machines
» demonstrate real-world performance for portable user
codes

NPB 2.3-serial
» stripped-down versions of the MPI implementations
» as starting points for other implementatiors and for
performance test of parallelizing tools/compilers

s
@ IS HY NPB - MPVHPEOMP

D\

2
B
it

|

What is PBN

» based on NPB2.3-serial
» additional modification
* real-world user optimization of the serial codes
* memory optimization in BT and SP
¢ hyper-plane and pipeline algorithms in LU
* data-copy improvement in FT and IS
* more convenient timers
- Why PBN
provide the optimized version of NPB2.3-serial
» make it available for public
» distinguish from the official NPB
» give sample HPF/OpenMP implementations

@ 399 HI NPB-MA/HPF/OMP 9

A\ 4

N

Starting point
» benchmarks from PBN-Serial
» BT, SP, LU, FT, CG, MG
+ excluded EP (for HPF) and IS (for HPF & OpenMP)

Implementations
» HPF sample implementation (PBN-H)
* done by hand
» OpenMP sample implementation (PBN-O)
» created by hand with assistant of parallelizing tools

@ 399 HI NPB-MA/HPF/OMP 10 é

Data distribution
» with ALIGN and DISTRIBUTE directives

Expressing parallelism
» F90 style of array expressions
» FORALL constructs
» INDEPENDENT directive for loops
EPF library intrinsics
Data redistribution
» to overcome incapability of mulriprocessor pipelining
and lack of the REDISTRIBUTE directive
» needed in BT, SP, and FT
» extra arrays used to keep the redistributed data

A\

AL
'—\i 399 HJ NEB-MA/HPF:OMP It

Vi

NAS

Parallel loops and sections
» with “ $OMP PARALLEL DO” and “!$OMP PARALLEL”
» outer-most loops for large granularity and low overhead
» no consideration of independent code sections

Variable privatization
» list lozal variables in the “PRIVATE ()" construct
» avoid conflict of memory access and false sharing
Pcint-to-point synchronization
» for multiprocessor pipeline implementation in LU
» with the “!$OMP FLUSH” construct

Others
~ data distribution based on the first-touch model
» no need for redistribution, thus, no extra arrays

/
@ 199 W NPH-MP, HPF/OMP 12

(AN

SGI Origin2000 (distributed shared memory)
» CPU: 195MHz, 32KB L1 cache, 4MB L2 cache
» compilers
* MIPSpro-f77 compiler 7.2.1
* PGI pghpf-2.4.3 compiler with MPI interface

» versions tested
* NPB-MPI, PBN-H and PBN-O

Cray T3E-1200 (distributed memory)
» PE: 300 MHz, 128MB
» compilers

* Cray-f90 compiler 3.1
¢ PGI pghpf-2.4.3 compiler with SHM interface

» versions tested
* NPB-MPI and PBN-H

(%] 3I99H) NPB-MP/HPF/OMP

aY

r4
P
n

* Single processor, four different platforms
* Class A/W problem size

160+
14011
120711
100+
8011
6011
40+
204
0+

O BT NPB2.3-serial | |
O BT PBN-S
0 SP NPB2.3-serial
O SP PBN-S

A}

MFLOPs/sec

I jI
= a3 :

T3E- RSK-
250MHz 300MHz 150MH:z 200MHz

@ I NPB-MA/HPFIOMP

A

N
2i
RPESSAORIPRLA i =
i i L %m__
SRR 2
< iy
— < ‘_ : | PUEE-TT JORYE LT PN 2
el : i e st
r 1 . H I
o ’ o .v., <V.
r S I + C L
4 TR w ! ..\ 1°
I 4. _., . 2 :
L,..W G e] i { | r :
EIR e I
¢ .o »n ;
; ! et r
S sl RN S S
8 Loy I aitl e
p "4 T ! 3. ! : 53
0 | -5 F m . 2 5
o b e E < "3 z
— xll'Tl“- ! 20 z m ; ‘ g - ¢
-~ L PSSR Tk B * - E ‘ $: ;
=] NIt (. <« L] ! e e Il L - M 2 g HM W
S 3 = : — - : [Te] iy 3
b4 L % ~ ‘v | <) ! " i :
qQE g " S N ~ b 1 2 g
g Ol T4 .o o ¥ _ LA E £
S ‘. [p— L ety 1)
fa 0 : o L HE RERNES o
] o o 4 » i i L " &) o :
6 & [! el “ — 2
o & sght 17 | s gl P * Sl
Q m Ll PN | B0 | n Wy > {
Ny —lA_ ! . LS a ' E .H
o - ;) ' * ; Q . B - _ ¢ :
5 o : Gl o i oy : : $3
oD * ¢ © 2 Tk o< : < RS
« o\ 10104205/ d O 14N I n g m_.lrn.us:rr[T u,_;)
e _, SN S
; Q0 ! = s o Ve oW ”;rL w
. F o ‘W‘uluw, 2w g ucynaaxg i
2
- :
-
OR)
-~

efepririzbeles Ceyeel

¢ On Cray T3E-1200, 300MHz
« Class A problem size

: ’3\ 5 T T AL T j ‘
; B
g, [s#] 13
g Ing : ‘J
£ < f . i
c r R] '
[} s L 3
- f = " g
T L M,»‘Fi . | ¥
3)y =z : . S &

£ FPF [] 3

3 o : —-—} l= p4
G i e]
P34 s 10 mB0 o3¢ r 2 32 610 2030 s f
Numbcr of CPUs é
T T I TR K TETGT T el

éﬁ_ f)/ : 399 HY NPB.MP/HPFIOMP 1"

N

2
>
th,

Overall, MPI implementatior scaling the hest
» multi-dimensional partition
» good load balance
OpenMP performing quite well
» close to MPI in most cases
" » even better in FT, no data transposition
» but, 1-D multiprocessor pipeline in LU not as good
» yet to see on larger number of processors

% 9 NPB-MPAMHPF/OMP I8

BN

HPF catching up, but still behind
» closer to MPl in FT and CG
» BT and SP closer to MPI on Origin2000, but deviated
quite a bit on T3E and even flat out after 32 procs
» poor performance of MG related to the lack of handling
irregular computation in HPF
Serial optimization
» affects overall performance
» optimized BT as an example

B 7
’}.‘: 399 HJ NPB.-MP/HPE.OMP 19 %
al NAS

Echo back
» MPI hard to program, OpenMP easy to write
» lack of HPF performance model still evident
» multi- evel parallelism in OpenMP not quite supported

Future development
» maturity of HPF compilers
» better tools and compilers help ease
“s the writing of MP] programs
« even useful for OpenMP/HPF programs

» on our part
* tests of PBN-H/PBN-O on more platforms
« program development environment

N\

2
»
il

@ 399 U NPB-MP/HPF/IOMP

paralletizagi,,

Tnteiligent ot
itunated unit®

NP8-MPA/HPFIOMP

39 HI

11

